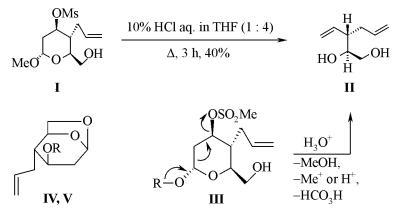
Russian Journal of Organic Chemistry, Vol. 38, No. 8, 2002, pp. 1226–1227. From Zhurnal Organicheskoi Khimii, Vol. 38, No. 8, 2002, pp. 1277–1278.

Original English Text Copyright © 2002 by Akhmetvaleev, Bikbulatov, Belogaeva, Akbutina, Miftakhov.

SHORT COMMUNICATIONS


Uncommon C¹-C² rupture in Methyl-4-C-allyl-2,4-dideoxy-3-*O*-mesyl-α-D-arabino-hexopyranoside

R. R. Akhmetvaleev, R. V. Bikbulatov, T. A. Belogaeva, F. A. Akbutina, and M. S. Miftakhov

Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Bashkortostan, 450054 Russia

Received April 11, 2002

In the course of a "rigorous" water-acidic deprotection of methoxyacetal function in a 2-deoxy-3-*O*-mesyl derivative of D-glucose (**I**) we observed a slow process providing in a moderate yield a new fragmentation product, diol **II**. According to TLC data in the reaction mixture appeared also an intermediate compound more polar than diol **II**, presumably the expected lactol **III**. However a considerable tarring did not allow an unambiguous conclusion that diol **II** formed via lactol **III** corresponding to acetal **I**. Apparently this process occurs by a concerted mechanism formally similar to Grob fragmentation [1, 2] as shown on the hypothetical scheme. Note that the methylglucoside (**I**) used in this study (α : β , 9:1) was prepared from the known alcohol **IV** [3] by standard procedures of mesylation and methanolysis.

R = Me or H (III), H (IV), Ms (V).

(2S,3S)-(-)-3-Vinylhex-5-ene-1,2-diol (II). A solution of 0.1 g (0.70 mmol) of mesylate I in a mixture of 10% aqueous HCl and THF (1:4) was boiled for 2 h. To the reaction mixture a saturated water solution of NaHCO₃ was added to pH 7, and the reaction product was extracted into dichloromethane (3×5 ml). The combined organic extracts were dried with MgSO₄, evaporated, and the residue was subjected to column chromatography on SiO₂ (eluent ethyl acetate-hexane, 2:1). We isolated 0.02 g (~40%) of oily compound II. $[\alpha]_D^{20}$ -1.5° (*c* 0.5, CHCl₃). IR spectrum, cm⁻¹: 3400, 3050, 1640, 1080,

920. ¹H NMR spectrum, δ , ppm: 2.10–2.40 m (5H, CH₂, CH, 2OH), 3.50–3.80 m (3H, CH₂O, CHO), 5.00– 5.20 m (4H) and 5.65–5.83 m (2H) (2CH=CH₂). ¹³C NMR spectrum, δ , ppm: 35.56 (C⁴), 46.82 (C³), 64.93 (C¹), 73.20 (C²), 116.11, 116.58 (C⁶, CH₂=), 136.19, 137.93 (C⁵, CH=).

Methyl-4-C-allyl-2,4-dideoxy-3-O-mesyl- α -Darabino-hexopyranoside (I). A solution of 0.6 g (2.42 mmol) of mesylate V in 5 ml of a 10% solution of gaseous HCl in MeOH was stirred for 3 h, neutralized with NaHCO₃, and evaporated. By column chromatography on SiO₂ (eluent ethyl acetate-hexane, 1:1) 0.48 g (80%) of oily compound **I** was isolated containing 5–10% of the respective β-anomer. $[\alpha]_D^{20} + 22^{\circ}$ (*c* 1.0, CHCl₃). IR spectrum, cm⁻¹: 3500, 3030, 1650, 1360, 1180, 920, 780. ¹H NMR spectrum, δ , ppm: 1.90 m (2H, H², H⁴), 2.20–2.40 m (4H, CH₂, H², OH), 2.99 s (3H, SO₂CH₃), 3.28 s (3H, OCH₃), 3.60–3.80 m (3H, H⁵, 2H⁶), 4.80 t (1H, H¹), 4.95 m (1H, H³), 5.05–5.20 m (2H) and 5.80 m (1H) (CH=CH₂). ¹³C NMR spectrum, δ , ppm: 30.54 (CH₂), 37.07 (C²), 38.67 (SO₂CH₃), 40.60 (C⁴), 54.55 (OCH₃), 62.36 (C⁶), 70.87 (C⁵), 97.96 (C¹), 117.87 (CH₂=), 133.58 (CH=).

4-C-Allyl-1,6-anhydro-2,4-dideoxy-3-*O***-mesyl-β**-*D-arabino***-hexopyranose (V).** To a solution of 0.5 g (2.94 mmol) of alcohol IV in a mixture of 3 ml of CH_2Cl_2 and 0.6 ml of triethylamine was added dropwise a solution of 0.26 ml of mesyl chloride in 1 ml of CH_2Cl_2 . On completion of the reaction (TLC monitoring) 5 ml of saturated NaCl solution was added to the reaction mixture, and the product was extracted into CH_2Cl_2 (3×15 ml). The combined organic extracts were dried with MgSO₄, evaporated, and the residue was subjected to column chromatography on SiO₂ (eluent ethyl acetate-hexane, 1:2). We obtained 0.68 g (94%) of mesylate V. $[\alpha]_D^{20}$ -57° (*c* 1.0, CHCl₃). IR spectrum, cm⁻¹: 3020, 1640, 1350, 920. ¹H NMR spectrum, δ , ppm: 2.00–2.10 m (3H, 2H², H⁴), 2.20–2.50 m (2H, CH₂), 3.02 s (3H, SO₂CH₃), 3.80 d.d (1H, H⁶-exo, J 5.3, 7.0 Hz), 4.22 d (1H, H⁶-endo, J 7.0 Hz), 4.40 d (1H, H⁵, J 5.3 Hz), 4.72 m (1H, H³), 5.10–5.20 m (2H, CH₂=), 5.52 s (1H, H¹), 5.75–5.90 m (1H, CH=). ¹³C NMR spectrum, δ , ppm: 33.82 (CH₂), 34.89 (C²), 38.82 (SO₂CH₃), 43.03 (C⁴), 67.47 (C⁶), 73.79 (C⁵), 76.48 (C³), 99.30 (C¹), 118.16 (CH₂=), 134.80 (CH=).

REFERENCES

- 1. Grob, C.A. and Shiess, P.W., Angew. Chem., 1966, vol. 79, no. 1, pp. 1-14.
- 2. Grob, C.A., Angew. Chem., 1968, vol. 81, no. 15, pp. 543-554.
- 3. Kelly, A.G. and Roberts J.S., *Chem. Commun.*, 1980, pp. 228–229.